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Boundary scattering matrices in the Hubbard model with
boundary fields
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Department of Physics, University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113, Japan

Received 31 January 1997, in final form 23 June 1997

Abstract. Elementary excitations in the one-dimensional Hubbard model with boundary fields
are discussed. Boundary scattering matrices for the excitations of the charge and spin sectors
are evaluated. Both the repulsive and the attractive Hubbard models at half-filling and without
a magnetic field are studied.

1. Introduction

In the present paper, we study the elementary excitations of the one-dimensional Hubbard
model with boundary fields, which is described by

H = −
L−1∑
j=1

∑
σ=±

(
c
†
jσ cj+1σ + c†j+1σ cjσ

)
+ 4u

L∑
j=1

(
nj+ − 1

2

) (
nj− − 1

2

)
+ q1+n1+ + q1−n1− + qL+nL+ + qL−nL−. (1.1)

Here the symbolcjσ (c†jσ ) denotes the annihilation (creation) operator of the electron with

the spinσ at the sitej , andnjσ is defined bynjσ = c†jσ cjσ . In the present paper, we take
an even integer asL.

The purpose of the present paper is to derive the boundary scattering matrices for
the quasiparticles corresponding to the charge and the spin excitations of the Hubbard
model with boundary fields (1.1). Essler and Korepin [1] and Andrei [2] studied scattering
matrices in the Hubbard model under aperiodic boundary condition. They determined the
two-particle scattering matrices in thebulk [1, 2]. In the present study, we determine the
scattering matrices of the quasiparticles at theboundary. In our previous study [3], we have
discussed the elementary excitations of the Hubbard model withfree boundaries, which
is described by the Hamiltonian (1.1) withq1± = qL± = 0. We have already obtained the
scattering matrices of the quasiparticles at afree boundary, as a part of our results in [3].

In order to derive the scattering matrices exactly, we need the Bethe-ansatz equations
for the Hubbard model with boundary fields. For the following four kinds of boundary
fields, the Bethe-ansatz equation of the present model (1.1) has been derived.

CaseA: q1± = q1 andqL± = qL (aa type) [4],
CaseB: q1± = ±q1 andqL± = ±qL (bb type) [5–7],
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351-01, Japan.
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CaseC: q1± = ±q1 andqL± = qL (ba type) [5, 6],
CaseD: q1± = q1 andqL± = ±qL (ab type) [5, 6].

Here thea-type (b-type) boundary field corresponds to the chemical potential (the magnetic
field) at a boundary site. (The Bethe-ansatz equation under the free boundary condition, i.e.
q1± = qL± = 0, has been derived by Schulz [8].) The Bethe-ansatz equation for each case
takes the following form [4–7]:

eikj2(L+1)Z(kj ; q1, qL) =
M∏
β=1

sinkj − λβ + iu

sinkj − λβ − iu

sinkj + λβ + iu

sinkj + λβ − iu
(1.2)

N∏
l=1

λα − sinkl + iu

λα − sinkl − iu

λα + sinkl + iu

λα + sinkl − iu
= Y (λα; q1, qL)

M∏
β=1
(β 6=α)

λα − λβ + 2iu

λα − λβ − 2iu

λα + λβ + 2iu

λα + λβ − 2iu

j = 1, . . . , N α = 1, . . . ,M (1.3)

whereN (M) denotes the total number of the electrons (the number of the electrons with
down spins). Here we have defined

Z(k; q1, qL) ≡ ζ(k; q1)ζ(k; qL) for casesA, B, C andD (1.4)

Y (λ; q1, qL) ≡



1 for caseA

η(λ; q1)η(λ; qL) for caseB

η(λ; q1) for caseC

η(λ; qL) for caseD

(1.5)

with

ζ(k; q) ≡ 1+ qe−ik

1+ qeik
η(λ; q) ≡ −λ+ i

(
u− 1

2(q
−1− q))

λ− i
(
u− 1

2(q
−1− q)) . (1.6)

Then, the energy of the present model is given by

E =
N∑
j=1

(−2 coskj − 2u
)+ uL. (1.7)

We can restrict the solutions of the above Bethe-ansatz equations as follows:

06 Re(kj ) 6 π kj 6= 0, π and Re(λα) > 0 λα 6= 0,∞ (1.8)

so that we obtain independent Bethe states. We refer the reader to the Bethe-ansatz
wavefunction in the present model [4, 8]. See also, e.g., [9, 10]. (In order to derive
the boundary scattering matrices for thea-type andb-type boundary fields we only have to
consider two cases, i.e. caseA (aa type) and caseB (bb type), since the contributions from
the both ends are independent of each other.)

The periodic Hubbard chain is invariant under anSO(4) = SU(2)× SU(2)/Z2

transformation [11]. Consequently, the Hubbard chain with the periodic boundary
condition has four elementary excitations (i.e. quasiparticles), which form the fundamental
representation ofSU(2)× SU(2), accuratelySO(4) [1]. A couple of these elementary
excitations carries spin but no charge, and the other couple carries charge but no spin.
The bulk terms in the open Hubbard chain with boundary fields (1.1) are alsoSO(4)
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= SU(2)× SU(2)/Z2 invariant. Indeed, if we neglect the boundary terms or the boundary
fields vanish in (1.1), all the following six generators:

S+ =
L∑
j=1

c
†
j+cj− S− =

L∑
j=1

c
†
j−cj+ Sz = 1

2

L∑
j=1

(
nj+ − nj−

)
(1.9)

T + =
L∑
j=1

(−1)j cj+cj− T − =
L∑
j=1

(−1)j c†j−c
†
j+ T z = −1

2

L∑
j=1

(
nj+ + nj− − 1

)
(1.10)

commute with the Hamiltonian (1.1). TheZ2 quotient corresponds to the fact that operator
Sz + T z has only integer eigenvalues asL is even. The operators{S+,S−,Sz} and
{T +, T −, T z} correspond to theSU(2) symmetry in the spin degree of freedom and that in
the charge degree of freedom, respectively. (In the present paper, we specify the totalSU(2)
spin (charge) by the quantum numberS (T ) and describe thez-componentSz (T z) by the
quantum numberSz (T z).) Since the properties of the elementary excitations in the bulk do
not depend on boundary conditions, the behaviours of the quasiparticles in the present model
(1.1) are already known except for the boundary scatterings. The local violation ofSO(4)
symmetry due to the boundary fields is expected to influence the scattering at the boundary,
as with other models, e.g., the Heisenberg model [9, 10] and the supersymmetrict–J
model [12]. Here we remark that thea-type boundary breaks the chargeSU(2) symmetry
(generated by{T +, T −, T z}) and theb-type boundary breaks the spinSU(2) symmetry
(generated by{S+,S−,Sz}).

The way to determine the boundary scattering matrices has been established through
recent works [9, 10, 18]. Ghoshal and Zamolodchikov [18] generalized the bootstrap
approach for determining the bulk scattering matrix [17] to derive the boundary scattering
matrix of the boundary sine-Gordon model. Fendley and Saleur [9] and Grisaruet al
[10] proposed alternative approaches to determine the boundary scattering matrix for the
Heisenberg open chain directly from the Bethe-ansatz equation. In the present paper, we use
the method by Grisaruet al [10]. Their method [10] is based on the following quantization
condition for factorized scattering of two particles with repiditiesλ1 and λ2 on a line of
lengthL:

exp
(
ip(λ1)2L

)
S12(λ1− λ2)K

L
1 (λ1)S12(λ1+ λ2)K

R
1 (λ1) = 1. (1.11)

This condition comes from the requirement that the wavefunction should vanish at the
both ends of the line [9, 10]. Here we describe the physical momentum of a quasiparticle
with a rapidity λ by the symbolp(λ). The symbolS12(λ) denotes the bulk scattering
matrix of the particles labelled by ‘1’ and ‘2’. The symbolKL(R)

1 (λ) denotes the boundary
scattering matrix describing the scattering of a boundary at the left (right) end. (For detailed
discussions on the quantization condition, see [10].)

By using the above quantization condition [10], we determine the boundary scattering
matrices in the charge sector and the spin sector for each of the following four cases:

• a-type boundary field in the repulsive Hubbard model (section 2),
• b-type boundary field in the repulsive Hubbard model (section 2),
• a-type boundary field in the attractive Hubbard model (section 3),
• b-type boundary field in the attractive Hubbard model (section 3).

Recently, another author [13] calculated boundary scattering matrices in the repulsive
Hubbard model with thea-type boundary field. He remarked [13] that quasiparticle spectra
of the repulsive and the attractive Hubbard models are related by an interchange of the
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spin and charge degrees of freedom [13], although he did not derive the scattering matrices
in the attractive Hubbard model explicitly. In the present paper, we derive the boundary
scattering matrices for the above four cases explicitly.

Since we need the information about the two-body scattering in the bulk [1, 2] in
deriving the boundary scattering matrices, we briefly review the known results about the
properties of the quasiparticles in the Hubbard chain and their two-body scattering matrix
in subsections 2.1 and 3.1. In our calculations, we also have to adopt the string hypothesis
[14] for the solutions of the Bethe-ansatz equation. In subsections 2.2 and 3.2, we briefly
explain the string forms of the solutions for the Hubbard chain, as preliminaries. We
determine the boundary scattering matrices foru > 0 in subsections 2.3 (charge sector)
and 2.4 (spin sector). Foru < 0, we obtain the matrices describing the boundary scattering
in subsection 3.3 (spin sector) and 3.4 (charge sector).

2. Repulsive Hubbard open chain

2.1. Review of the bulk scattering matrix

In this subsection, we briefly review the two-body scattering matrix [1, 2] of the elementary
excitations in the (infinitely long) periodic Hubbard chain with theSO(4) symmetry for
u > 0. (For detailed explanations, see, e.g., [1, 2] and references therein.)

The repulsive Hubbard model has four elementary excitations, which forms fundamental
representation ofSU(2)spin× SU(2)charge [1, 2]. Two of them carry spin but no charge to
form a doublet of the spinSU(2). Each of them is a singlet with respect to the charge
SU(2). Namely, their quantum numbers can be described asS = 1

2, Sz = ± 1
2 andT = 0.

These two excitations (quasiparticles) are called spinons, and have the momentumps(λ)

and the energyεs(λ):

ps(λ) = π

2
−
∫ ∞

0

dω

ω

J0(ω) sin(ωλ)

cosh(ωu)
(2.1)

εs(λ) = 2
∫ ∞

0

dω

ω

J1(ω) cos(ωλ)

cosh(ωu)
. (2.2)

Here the symbolJn(ω) denotes the Bessel function. The other two elementary excitations
carry charge but no spin to form a doublet with respect to the chargeSU(2) and a
singlet of the spinSU(2). Namely, they have the quantum numbersT = 1

2, T z = ± 1
2 and

S = 0. These two excitations (quasiparticles) are called holon forT z = 1
2 and antiholon for

T z = − 1
2. The holon (antiholon) has the momentumph

c(k) (pah
c (k)) and the energyεh

c(k)

(εah
c (k)) described by

ph
c(k) =

π

2
− k −

∫ ∞
0

dω

ω

J0(ω) sin(ω sink)e−ωu

cosh(ωu)
= π + pah

c (k) (2.3)

εh
c(k) = 2u+ 2 cosk + 2

∫ ∞
0

dω

ω

J1(ω) cos(ω sink) e−ωu

cosh(ωu)
= εah

c (k). (2.4)

The two-body scattering matrix of these elementary excitations is 16-dimensional and
block-diagonal, which is described by

S =


Sss(µ1) 0 0 0

0 Ssc(µ2) 0 0

0 0 Scs(µ3) 0

0 0 0 Scc(µ4)

 . (2.5)
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At first, the matrixSss describes scattering of two spinons (with rapiditiesλ1 andλ2), and
is of the form

Sss(µ) = −
0
(

1
2 + 1

2iµ
)
0
(
1− 1

2iµ
)

0
(

1
2 − 1

2iµ
)
0
(
1+ 1

2iµ
) (µI + iP

µ+ i

)
µ = λ1− λ2

2u
(> 0) (2.6)

whereI andP denote the 4× 4 identity and permutation matrices, respectively. The four-
dimensional space ofSss corresponds to the four degenerate states with two spinons, i.e.
the triplet (S = 1) and the singlet (S = 0) states. Next, the scattering matrixScc for two
holons/antiholons (with rapiditiesk1 andk2) is given by

Scc(µ) =
0
(

1
2 − 1

2iµ
)
0
(
1+ 1

2iµ
)

0
(

1
2 + 1

2iµ
)
0
(
1− 1

2iµ
) (µI − iP

µ− i

)
µ = sink1− sink2

2u
(> 0). (2.7)

This matrix Scc is described in the space spanned by the four degenerate states with two
holons/antiholons, i.e. the triplet (T = 1) and the singlet (T = 0) states. The scattering of
one spinon and one holon/antiholon is described by

Ssc(µ) = −i
1+ i exp(πµ)

1− i exp(πµ)
I µ = λ− sink

2u
(> 0) (2.8)

Scs(µ) = −i
1+ i exp(πµ)

1− i exp(πµ)
I µ = sink − λ

2u
(> 0). (2.9)

2.2. String hypothesis

In deriving the boundary scattering matrices in subsections 2.3 and 2.4, we shall assume
that the string hypothesis [14] holds in the solutions of the Bethe-ansatz equation for the
Hubbard model with boundaries similarly to the periodic-boundary case. (Also in other
models, e.g., the Heisenberg model [9, 10] and the supersymmetrict–J model [12], the
solutions of the Bethe-ansatz equations for the open chain are expected to take the same
string forms as those for the periodic chain.) In this subsection, we briefly explain the string
forms [14] of the solutions in the Bethe-ansatz equation for the repulsive Hubbard chain.

We assume that the solutions of the Bethe-ansatz equation for the repulsive Hubbard
chain take the following string forms [14].

(1) λ-strings: n λα ’s combine into a string-type configuration to take the form

λn,jα = λnα + i(n+ 1− 2j)u j = 1, . . . , n α = 1, . . . ,Mn

with a real numberλnα, apart from a correction of order e−δL. Here the symbolδ denotes a
positive number.
(2) k–λ-strings: 2n kj ’s andn λα ’s combine into another string-type configuration and take
the following forms to O(e−δL):

λ′n,jα = λ′nα + i(n+ 1− 2j)u j = 1, . . . , n α = 1, . . . ,M ′n
with a real numberλ′nα, and

k1
α = π − sin−1(λ′nα + inu)

k2
α = sin−1(λ′nα + i(n− 2)u) k3

α = π − k2
α

k4
α = sin−1(λ′nα + i(n− 4)u) k5

α = π − k4
α

...
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k2n−2
α = sin−1(λ′nα − i(n− 2)u) k2n−1

α = π − k2n−2
α

k2n
α = π − sin−1(λ′nα − inu).

(3) Realkj , which do not form the above string-type configurations. (Hereafter, we describe
only this type of real element in{kj } by the symbolkj .)

If we introduce the numberM ′ by M ′ =∑∞n=1 nM
′
n, the number of realkj ’s is equal to

N − 2M ′. We also find that the relationshipM =∑∞n=1 nMn +
∑∞

n=1 nM
′
n holds.

The ground state of the present model (1.1) withu > 0 corresponds to the case with
N = L, M1 = L/2, Mn = 0 (n > 2) andM ′n = 0 (n > 1).

2.3. Charge sector

In this subsection, we derive the boundary scattering matrices for the elementary excitation
of the charge sector foru > 0.

For this purpose, we take it into account that the quantization condition for factorized
scattering of two particles holds [9, 10]. We can describe the quantization condition for
factorized scattering of two particles with rapiditiesk1 and k2 on a line of lengthL, as
follows:

exp(ipc(k1)2L)Scc(θ1− θ2)Kc(k1; q1)Scc(θ1+ θ2)Kc(k1; qL) = 1 (2.10)

with θj ≡ sinkj/(2u) for j = 1, 2. The quantitypc(k) takes the holon momentumph
c(k)

(the antiholon momentumpah
c (k)) for T z = 1

2 (T z = − 1
2). For the triplet state (T = 1), the

bulk scattering matrixScc is of the form [1]

Scc(µ) = exp
(
iψcc(µ)

)
ψcc(µ) = 1

i
ln

(
0
(

1
2 − 1

2iµ
)
0
(
1+ 1

2iµ
)

0
(

1
2 + 1

2iµ
)
0
(
1− 1

2iµ
)). (2.11)

TheU(1) symmetry of the boundary terms in eq.(1.1) implies that the boundary scattering
matrixKc(k; q) takes the following form:

Kc(k; q) =
(

exp
(
iφ+c (k; q)

)
0

0 exp
(
iφ−c (k; q)

) ) . (2.12)

Here this matrix is represented in the two-dimensional space spanned by the states with
T z = ± 1

2. Then, the quantization condition yields the following relationships:

2Lph
c(k1)+ ψcc(θ1− θ2)+ φ+c (k1; q1)+ ψcc(θ1+ θ2)+ φ+c (k1; qL) = 0 (mod 2π)

(2.13)

for the T z = 1 state, and

2Lpah
c (k1)+ ψcc(θ1− θ2)+ φ−c (k1; q1)+ ψcc(θ1+ θ2)+ φ−c (k1; qL) = 0 (mod 2π)

(2.14)

for theT z = −1 state. Here we should takeL+ 1 asL for models defined on a chain with
L sites [3]. What we have to do here is to determine the phase shiftsφ±c (k; q).

Within the string hypothesis, the state withT z = 1 is characterized by two holes in the
sea of real roots of{kj } and no holes in the sea of real{λα}. Namely, this state corresponds
to the case withN = L− 2, M1 = L/2− 1, Mn = 0 (n > 2) andM ′n = 0 (n > 1). Then,
we can rewrite the Bethe-ansatz equations in the following forms:

Ij

L
= zc(kj ) and

Jα

L
= zs(λα) (2.15)



Boundary scattering matrices in the Hubbard model 7

2πzc(k) ≡ 2

(
1+ 1

L

)
k − i

L
lnZ(k)+ 1

L

L/2−1∑
β=1

{
θ

(
sink − λβ

u

)
+ θ

(
sink + λβ

u

)}
(2.16)

2πzs(λ) ≡ 1

L
θ

(
λ

u

)
− i

L
lnY (λ)+ 1

L

L∑
l=1

{
θ

(
λ− sinkl

u

)
+ θ

(
λ+ sinkl

u

)}

− 1

L

2∑
j=1

{
θ

(
λ− sinkh

j

u

)
+ θ

(
λ+ sinkh

j

u

)}

− 1

L

L/2−1∑
β=1

{
θ

(
λ− λβ

2u

)
+ θ

(
λ+ λβ

2u

)}
(2.17)

with θ(x) = 2 tan−1 x. Here {Ij } (j = 1, . . . , L) and {Jα} (α = 1, . . . , L/2− 1) take
positive integer values. Two of{Ij } correspond to the holes with the rapiditieskh

1 and
kh

2. By neglecting contributions smaller than 1/L, we have

2πzc(k) = −2

(
1+ 1

L

) (
ph

c(k)− ph
c(0)

)− 1

L
(Bc(k; q1)+ Bc(k; qL))− 1

L
9(sink)

− 1

L

{ 2∑
j=1

(
8(sink − sinkh

j )+8(sink + sinkh
j )
)+8(sink)

}
(2.18)

where

9(λ) = i
∫ ∞
−∞

e−iωλ

2 coshuω

dω

ω
8(λ) = i

∫ ∞
−∞

e−|uω|e−iωλ

2 coshuω

dω

ω
(2.19)

Bc(k; q) = 1

i
ln

1+ qeik

1+ qe−ik
+ 1

i

∫ ∞
−∞

dω

ω

e−iω sink

2 coshuω
ÃR(ω; q). (2.20)

Here the functionÃR is given byÃR(ω; q) =
∫∞
−∞ dλAR(λ; q)eiωλ, where

AR(λ; q) =


∫ π

−π
dk a1(λ− sink)A0(k; q) for type a∫ π

−π
dk a1(λ− sink)A0(k; q)+A1(λ; q) for type b

(2.21)

aν(λ) = 1

π

ν|u|
λ2+ (νu)2

A0(k; q) = 1

2π i

d

dk
ln ζ(k; q)

A1(λ; q) = 1

2π i

d

dλ
ln η(λ; q).

(2.22)

When we need to express the fact that the functionAR(λ; q) depends on the parameter
u and the type of boundary fields (a or b), we describe this function asAxR(λ; q|u) with
x = a, b. In deriving equation (2.18), we have neglected higher-order corrections to rewrite
the summations in (2.16), (2.17) as integrals. Then, we have made the assumption that the
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contributions due to the shift of integration boundaries are of higher order in 1/L, as in the
cases of other models [9, 10, 12]. Using the functionszc andzs thus obtained, we have

−2πzc(k1)L = 2(L+ 1)
(
ph

c(k1)− ph
c(0)

)+8(sink1− sink2)+8(sink1+ sink2)

+9(sink1)+8(sink1)+8(2 sink1)+ Bc(k1; q1)+ Bc(k1; qL) (2.23)

where we have abbreviatedkh
j by kj . Here the equality

2πzc(k1)L = 0 (mod 2π) (2.24)

holds since evaluation forLzc at a root of the Bethe-ansatz equations yields an integer by
definition. Comparing equations (2.23), (2.24) with (2.13), we can recognize the relationship

φ+c (k; q) = φ(0)c (k)+ δ+c (k; q) (2.25)

φ(0)c (k) = 1
2 (9(sink)+8(sink)+8(2 sink)) δ+c (k; q) = Bc(k; q) (2.26)

holds apart from rapidity-independent constants. We have already derivedφ(0)c using the
Bethe-ansatz equation for the Hubbard model with free boundaries [3]. We can rewrite the
phase shiftsφ(0)c andδ+c to have

φ(0)c (k) = 1

i
ln

(
0
(
1+ 1

2iθ
)
0
(

1
4 − 1

2iθ
)

0
(
1− 1

2iθ
)
0
(

1
4 + 1

2iθ
)) θ = sink

2u
(2.27)

δ+c (k; q) =



1

i
ln

1+ qeik

1+ qe−ik
+2c(k; q) for type a

1

i
ln

(
1+ qeik

1+ qe−ik

0
(

1
2ξ + 1

2iθ
)
0
(

1
2(ξ + 1)− 1

2iθ
)

0
(

1
2ξ − 1

2iθ
)
0
(

1
2(ξ + 1)+ 1

2iθ
))

+2c(k; q) for type b

(2.28)

with

2c(k; q) = 1

i

∫ ∞
−∞

dω

ω
e−iω sink e−u|ω|

2 coshuω

(
2
∞∑
j=1

q2j J2j (ω)

)
. (2.29)

In the present paper, we define the parameterξ to beξ ≡ (q−1− q)/(4|u|) for u > 0 and
u < 0. In calculating the phase shift for the type-b boundary field, we have constrained
ourselves to the region 1> q > 0 andξ > 1

2.
Next, we discuss the case withT z = −1. We consider the following canonical

transformation:

cj+ −→ (−1)j c†j− and cj− −→ (−1)j c†j+ (2.30)

which keeps the Hamiltonian (1.1) without boundary fields invariant. The present
transformation does not change the type-b boundary field, but changes the sign of the type-a

boundary field. We also remark that the operators
∑

α=x,y,z SαSα, Sz and
∑

α=x,y,z T αT α
are invariant, andT z changes into−T z, under the transformation. Therefore, we can obtain
the state withT z = −1 of the Hubbard model (1.1) as that withT z = 1 of the model with
the type-a boundary field reversed. After similar calculations to the previous case, we arrive
at the following results:

φ−c (k; q) = φ(0)c (k)+ δ−c (k; q) δ−c (k; q) = Bc(k;−q) (2.31)
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apart from rapidity-independent constants. The above equation holds for both of the type-a

and the type-b boundary fields, since the functionBc(k; q) is an even function ofq for the
type-b boundary field. Indeed, we have

δ−c (k; q) =



1

i
ln

1− qeik

1− qe−ik
+2c(k; q) for type a

1

i
ln

(
1+ qeik

1+ qe−ik

0
(

1
2ξ + 1

2iθ
)
0
(

1
2(ξ + 1)− 1

2iθ
)

0
(

1
2ξ − 1

2iθ
)
0
(

1
2(ξ + 1)+ 1

2iθ
))

+2c(k; q) for type b

(2.32)

for 1> q > 0 andξ > 1
2.

Then, we find that the following relationships hold:

δ−c (k; q)− δ+c (k; q) =


1

i
ln
ξ − iθ

ξ + iθ
for type a

0 typeb.

(2.33)

2.4. Spin sector

In this subsection, we determine the scattering matrices for the elementary excitation of the
spin sector foru > 0.

In this case, we consider the quantization condition for factorized scattering of two-
particle states with rapiditiesλ1 andλ2;

exp
(
ips(λ1)2L

)
Sss(θ1− θ2)Ks(λ1; q1)Sss(θ1+ θ2)Ks(λ1; qL) = 1 (2.34)

with θj ≡ λj/(2u) for j = 1, 2. Here the symbolps(λ) denotes the momentum of a spinon
of a rapidityλ. For the triplet state (S = 1), the bulk scattering matrixSss takes the form [1]

Sss(µ) = eiψss(µ) ψss(µ) = π + 1

i
ln

(
0
(

1
2 + 1

2iµ
)
0
(
1− 1

2iµ
)

0
(

1
2 − 1

2iµ
)
0
(
1+ 1

2iµ
)) . (2.35)

When we parametrize the boundary scattering matrixKs(λ; q) as follows:

Ks(λ; q) =
(

exp
(
iφ+s (λ; q)

)
0

0 exp
(
iφ−s (λ; q)

) ) (2.36)

we can rewrite the quantization condition as

2Lps(λ1)+ ψss(θ1− θ2)+ φ±s (λ1; q1)+ ψss(θ1+ θ2)+ φ±s (λ1; qL) = 0 (mod 2π)

(2.37)

for two-particle states withSz = ±1, respectively.
Within the string hypothesis, the state withSz = 1 corresponds to that with two holes

in the sea of real roots of{λα} and without holes in the sea of real{kj } , i.e. N = L,
M1 = L/2− 1, Mn = 0 (n > 2)) andM ′n = 0 (n > 1) . Then, the Bethe-ansatz equations
are of the form

Ij

L
= zc(kj ) and

Jα

L
= zs(λα) (2.38)
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2πzc(k) ≡ 2

(
1+ 1

L

)
k − i

L
lnZ(k)+ 1

L

L/2+1∑
β=1

{
θ

(
sink − λβ

u

)
+ θ

(
sink + λβ

u

)}

− 1

L

2∑
α=1

{
θ

(
sink − λh

α

u

)
+ θ

(
sink + λh

α

u

)}
(2.39)

2πzs(λ) ≡ 1

L
θ

(
λ

u

)
− i

L
lnY (λ)+ 1

L

L∑
l=1

{
θ

(
λ− sinkl

u

)
+ θ

(
λ+ sinkl

u

)}

− 1

L

L/2+1∑
β=1

{
θ

(
λ− λβ

2u

)
+ θ

(
λ+ λβ

2u

)}

+ 1

L

2∑
α=1

{
θ

(
λ− λh

α

2u

)
+ θ

(
λ+ λh

α

2u

)}
. (2.40)

Here {Ij } (j = 1, . . . , L) and {Jα} (α = 1, . . . , L/2+ 1) take positive integer values. Two
of the {Jα} correspond to the holes with the rapiditiesλh

1 and λh
2. We neglect terms less

than 1/L to obtain

2πzs(λ) = −2

(
1+ 1

L

)
(ps(λ)− ps(0))− 1

L
(Bs(λ; q1)+ Bs(λ; qL))− 1

L
9(λ)

+ 1

L

{
2∑
α=1

(
8(λ− λh

α)+8(λ+ λh
α)
)+8(λ)} (2.41)

with

Bs(λ; q) = 1

i

∫ ∞
−∞

dω

ω

e−iωλeu|ω|

2 coshuω
ÃR(ω; q). (2.42)

Using the functionzs thus obtained, we can derive

−2πzs(λ1)L = 2(L+ 1) (ps(λ1)− ps(0))−8(λ1− λ2)−8(λ1+ λ2)

+9(λ1)−8(λ1)−8(2λ1)+ Bs(λ1; q1)+ Bs(λ1; qL) (2.43)

where we useλα as an abbreviation forλh
α. Taking the equality

2πzs(λ1)L = 0 (mod 2π) (2.44)

into account, equations (2.43) and (2.37) yield

φ+s (λ; q) = φ(0)s (λ)+ δ+s (λ; q) (2.45)

φ(0)s (λ) = 1
2 (9(λ)−8(λ)−8(2λ)) δ+s (λ; q) = Bs(λ; q) (2.46)

up to rapidity-independent additive constants. We have already derivedφ(0)s in [3]. The
explicit forms ofφ(0)s andδ+s are given by

φ(0)s (λ) = 1

i
ln

(
0
(
1− 1

2iθ
)
0
(

3
4 + 1

2iθ
)

0
(
1+ 1

2iθ
)
0
(

3
4 − 1

2iθ
)) θ = λ

2u
(2.47)

δ+s (λ; q) =


2s(λ; q) for type a

1

i
ln

(
0
(

1
2ξ − 1

4 + 1
2iθ
)
0
(

1
2ξ + 1

4 − 1
2iθ
)

0
(

1
2ξ − 1

4 − 1
2iθ
)
0
(

1
2ξ + 1

4 + 1
2iθ
))+2s(λ; q) for type b

(2.48)
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with 1> q > 0 andξ > 1
2, where

2s(λ; q) = 1

i

∫ ∞
−∞

dω

ω
e−iωλ 1

2 coshuω

(
2
∞∑
j=1

q2j J2j (ω)

)
. (2.49)

Next, in order to discuss the two-particle state withSz = −1, we consider the canonical
transformation

cj+ −→ cj− and cj− −→ cj+ (2.50)

which keeps the Hamiltonian (1.1) without the boundary-field terms invariant. This
transformation changes the sign of the type-b boundary field while it keeps the type-
a boundary field invariant. The operators

∑
α=x,y,z T αT α, T z and

∑
α=x,y,z SαSα are

invariant, andSz changes into−Sz. Hence, we can obtain the state withSz = −1 of
the Hubbard model (1.1) as that withSz = 1 of the model with the type-b boundary field
reversed. By taking this fact into account, we have

φ−s (λ; q) = φ(0)s (λ)+ δ−s (λ; q) δ+s (λ; q) = Bs(λ;−q) (2.51)

up to rapidity-independent additive constants. Here we remark that the functionBs(λ; q) is
even with respect toq for the type-a boundary field. The explicit form of the phase shift
is given by

δ−s (λ; q) =


2s(λ; q) for type a

1

i
ln

(
0
(

1
2ξ + 3

4 + 1
2iθ
)
0
(

1
2ξ + 1

4 − 1
2iθ
)

0
(

1
2ξ + 3

4 − 1
2iθ
)
0
(

1
2ξ + 1

4 + 1
2iθ
))+2s(λ; q) for type b

(2.52)

for 1> q > 0 andξ > 1
2.

Finally, we arrive at the following relationships:

δ−s (λ; q)− δ+s (λ; q) =


0 for typea

1

i
ln
ξ − 1

2 + iθ

ξ − 1
2 − iθ

for type b.
(2.53)

3. Attractive Hubbard open chain

3.1. Review of the bulk scattering matrix

In this subsection, we briefly review the two-body scattering matrix in the bulk for the
attractive Hubbard chain [1, 2]. (For detailed discussions, see, e.g., [1, 2] and references
therein.)

The attractive Hubbard model has also four elementary excitations, which form a
fundamental representation ofSU(2)spin× SU(2)charge [1, 2]. Two of them are chargeless
spin-carriers with the quantum numbersS = 1

2, Sz = ± 1
2 and T = 0. The dispersion

relations of these quasiparticles are given by

p1(k) = k −
∫ ∞

0

dω

ω

J0(ω) sin(ω sink) e−ω|u|

cosh(ωu)
(3.1)

ε1(k) = 2|u| − 2 cosk + 2
∫ ∞

0

dω

ω

J1(ω) cos(ω sink) e−ω|u|

cosh(ωu)
. (3.2)
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The other two elementary excitations are spinless charge-carriers with the quantum numbers
T = 1

2, T z = ± 1
2 andS = 0. These particles have the following dispersion relations:

p
p
2(λ) = π −

∫ ∞
0

dω

ω

J0(ω) sin(ωλ)

cosh(ωu)
= π + ph

2(λ) (3.3)

ε
p
2(λ) = 2

∫ ∞
0

dω

ω

J1(ω) cos(ωλ)

cosh(ωu)
= εh

2(λ). (3.4)

Here the charge excitation withT z = 1
2 (T z = − 1

2) has the momentumph
2(λ) (pp

2(λ)) and
the energyεh

2(λ) (εp
2(λ)).

The two-body scattering matrix of these elementary excitations takes the following form:

S =


S11(µ1) 0 0 0

0 S12(µ2) 0 0

0 0 S21(µ3) 0

0 0 0 S22(µ4)

 . (3.5)

At first, the matrixS11 describes the scattering of two spin-carriers (with rapiditiesk1 and
k2), which is of the form

S11(µ) =
0
(

1
2 − 1

2iµ
)
0
(
1+ 1

2iµ
)

0
(

1
2 + 1

2iµ
)
0
(
1− 1

2iµ
) (µI − iP

µ− i

)
µ = sink1− sink2

2|u| (> 0). (3.6)

Next, the matrixS22 describing scattering of two charge-carriers (with rapiditiesλ1 andλ2)
takes the following form:

S22(µ) = −
0
(

1
2 + 1

2iµ
)
0
(
1− 1

2iµ
)

0
(

1
2 − 1

2iµ
)
0
(
1+ 1

2iµ
) (µI + iP

µ+ i

)
µ = λ1− λ2

2|u| (> 0). (3.7)

The scattering of one spin-carrier and one charge-carrier is described by

S12(µ) = −i
1+ i exp(πµ)

1− i exp(πµ)
I µ = sink − λ

2|u| (> 0) (3.8)

S21(µ) = −i
1+ i exp(πµ)

1− i exp(πµ)
I µ = λ− sink

2|u| (> 0). (3.9)

3.2. String hypothesis

In this subsection, we explain the string hypothesis [1, 14] for the attractive Hubbard chain.
Within this hypothesis, we calculate the boundary scattering matrices in subsections 3.3 and
3.4.

For the attractive Hubbard chain, we assume that the solutions for the Bethe-ansatz
equations take the following string forms [1, 14].

(1) λ-strings:n λα ’s combine into a string-type configuration to take the form

λn,jα = λnα + i(n+ 1− 2j)|u| j = 1, . . . , n α = 1, . . . ,Mn

with a real numberλnα, apart from a correction of order e−δL. Hereδ is a positive number.
(2) k–λ-strings: 2n kj ’s andn λα ’s combine into another string-type configuration and take
the following forms within the accuracy of O(e−δL):

λ′n,jα = λ′nα + i(n+ 1− 2j)|u| j = 1, . . . , n α = 1, . . . ,M ′n
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with a real numberλ′nα, and

k1
α = sin−1(λ′nα + in|u|)
k2
α = sin−1(λ′nα + i(n− 2)|u|) k3

α = π − k2
α

k4
α = sin−1(λ′nα + i(n− 4)|u|) k5

α = π − k4
α

...

k2n−2
α = sin−1(λ′nα − i(n− 2)|u|) k2n−1

α = π − k2n−2
α

k2n
α = sin−1(λ′nα − in|u|).

(3) Real kj ’s, which do not form the above string-type configurations. (Hereafter, we
describe only this type of real element in{kj } by the symbolskj .)

If we introduce the numberM ′ by M ′ =∑∞n=1 nM
′
n, the number of realkj ’s is equal to

N − 2M ′. We also find that the relationshipM =∑∞n=1 nMn +
∑∞

n=1 nM
′
n holds.

The ground state of the present model (1.1) withu < 0 corresponds to the case with
N = L, M ′1 = L/2, M ′n = 0 (n > 2) andMn = 0 (n > 1).

3.3. Spin sector

In this subsection, we derive the boundary scattering matrices for the elementary excitation
with spin for the attractive Hubbard chain.

The quantization condition for factorized scattering of such two particles with rapidities
k1 andk2 on a line of lengthL is given by

exp
(
ip1(k1)2L

)
S11(θ1− θ2)K1(k1; q1)S11(θ1+ θ2)K1(k1; qL) = 1 (3.10)

with θj ≡ sinkj/(2|u|) for j = 1, 2. For the triplet state (S = 1), the bulk scattering matrix
S11 take the form [1]

S11(µ) = eiψ11(µ) ψ11(µ) = 1

i
ln

(
0
(

1
2 − 1

2iµ
)
0
(
1+ 1

2iµ
)

0
(

1
2 + 1

2iµ
)
0
(
1− 1

2iµ
)) . (3.11)

We can rewrite the quantization conditions as

2Lp1(k)+ ψ11(θ1− θ2)+ φ±1 (k1; q1)+ ψ11(θ1+ θ2)+ φ±1 (k1; qL) = 0 (mod 2π) (3.12)

for the states withSz = ±1, where we have parametrized the boundary scattering matrices
K1 as follows:

K1(k; q) =
(

eiφ+1 (k;q) 0

0 eiφ−1 (k;q)

)
. (3.13)

The two-particle state withSz = 1 corresponds to the case withN = L, M ′1 = L/2− 1,
M ′n = 0 (n > 2) andMn = 0 (n > 1). In this case, the Bethe-ansatz equations take the
forms
Ij

L
= z1(k

p
j ) and

Jα

L
= z2(λα) (3.14)

2πz1(k) ≡ 2

(
1+ 1

L

)
k − i

L
lnZ(k)− 1

L

L/2−1∑
β=1

{
θ

(
sink − λβ
|u|

)
+ θ

(
sink + λβ
|u|

)}
(3.15)
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2πz2(λ) ≡ 2

(
1+ 1

L

) (
sin−1(λ+ i|u|)+ sin−1(λ− i|u|))− 1

L
θ

(
λ

|u|
)
− i

L
lnY (λ)

− 1

L

2∑
j=1

{
θ

(
λ− sinkp

j

|u|

)
+ θ

(
λ+ sinkp

j

|u|

)}

− 1

L

L/2−1∑
β=1

{
θ

(
λ− λβ

2|u|
)
+ θ

(
λ+ λβ

2|u|
)}

(3.16)

with

Y (λ; q1, q2) ≡ Y (λ; q1, q2)Z(k
+; q1, q2)Z(k

−; q1, q2) sink± ≡ λ± i|u|. (3.17)

Here {Ij } (j = 1, 2) and{Jα} (α = 1, . . . , L/2− 1) take integer values. We have no holes
in the sea of the real rapidities{λα} while the integersI1 and I2 correspond to the two
particles with the real rapiditieskp

1 andkp
2. If we neglect higher-order terms of 1/L, we can

derive the explicit form ofz1 as follows:

2πz1(k) = 2

(
1+ 1

L

)
(p1(k)− p1(0))+ 1

L
(B1(k; q1)+ B1(k; qL))+ 1

L
9(sink)

+ 1

L

{ 2∑
j=1

(
8(sink − sinkp

j )+8(sink + sinkp
j )
)
+8(sink)

}
(3.18)

with

B1(k; q) = 1

i
ln

1+ qe−ik

1+ qeik
+ 1

i

∫ ∞
−∞

dω

ω

e−iω sink

2 coshuω
ÃA(ω; q). (3.19)

HereÃA(ω; q) denotes the Fourier-transformed function ofAA(λ; q), which is defined by

AA(λ; q) =
{
A2(λ; q) for type a

A1(λ; q)+A2(λ; q) for type b
(3.20)

A2(λ; q) = 1

2π i

d

dλ
ln
(
ζ(k+; q)ζ(k−; q)) . (3.21)

The symbolAA(λ; q) is an abbreviation forAxA(λ; q|u) with x = a, b. Here we can prove
that the equations

AaA(λ; q|u) = AbR(λ;−q| |u| ) and AbA(λ; q|u) = AaR(λ;−q| |u| ) (3.22)

hold for |q| < 1. In the following calculation, we take these relationships into account. (We
have already derived and used these equalities in [15].)

We compare the quantization condition (3.12) with the relationship

2πz1(k1)L = 0 (mod 2π) (3.23)

2πz1(k1)L = 2(L+ 1) (p1(k)− p1(0))+8(sink1− sink2)+8(sink1+ sink2)

+9(sink)+8(sink)+8(2 sink)+ B1(k1; q1)+ B1(k1; qL) (3.24)

(where we describe{kp
j } by the symbolskj as abbreviations), so that we obtain

φ+1 (k; q) = φ(0)1 (k)+ δ+1 (k; q) (3.25)

φ
(0)
1 (k) = 1

2 (9(sink)+8(sink)+8(2 sink)) δ+1 (k; q) = B1(k; q) (3.26)
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apart from rapidity-independent constants. We can find explicit forms of the phase shifts as
follows:

φ
(0)
1 (k) = 1

i
ln

(
0
(
1+ 1

2iθ
)
0
(

1
4 − 1

2iθ
)

0
(
1− 1

2iθ
)
0
(

1
4 + 1

2iθ
)) θ = sink

2|u| (3.27)

δ+1 (k; q) =



1

i
ln

(
1+ qe−ik

1+ qeik

0
(

1
2ξ + 1+ 1

2iθ
)
0
(

1
2(ξ + 1)− 1

2iθ
)

0
(

1
2ξ + 1− 1

2iθ
)
0
(

1
2(ξ + 1)+ 1

2iθ
))

+21(k; q) for type a

1

i
ln

1+ qe−ik

1+ qeik
+21(k; q) for type b

(3.28)

for 1> q > 0 and 2ξ ≡ (q−1− q)/(2|u|) > 1. Here we have defined the function21 as
follows:

21(k; q) = 1

i

∫ ∞
−∞

dω

ω
e−iω sink e−|uω|

2 coshuω

(
2
∞∑
j=1

q2j J2j (ω)

)
. (3.29)

By an argument similar to that in subsection 2.4, we obtain the case withSz = −1 to
derive the boundary phase shifts

φ−1 (k; q) = φ(0)1 (k)+ δ−1 (k; q) δ−1 (k; q) = B1(k;−q) (3.30)

with

δ−1 (k; q) =



1

i
ln

(
1+ qe−ik

1+ qeik

0
(

1
2ξ + 1+ 1

2iθ
)
0
(

1
2(ξ + 1)− 1

2iθ
)

0
(

1
2ξ + 1− 1

2iθ
)
0
(

1
2(ξ + 1)+ 1

2iθ
))

+21(k; q) for type a

1

i
ln

1− qe−ik

1− qeik
+21(k; q) for type b

(3.31)

for 1> q > 0 and 2ξ > 1.
The difference between the phase shifts for the quasiparticles withSz = 1

2 andSz = − 1
2

is given by

δ−1 (k; q)− δ+1 (k; q) =


0 for typea

1

i
ln
ξ + iθ

ξ − iθ
for type b.

(3.32)

3.4. Charge sector

In this subsection, we derive the boundary scattering matrices for the elementary excitations
with charge for the attractive Hubbard chain.

The quantization condition for factorized scattering of two-particle states with rapidities
λ1 andλ2 are given by

exp
(
ip2(λ1)2L

)
S22(θ1− θ2)K2(λ1; q1)S22(θ1+ θ2)K2(λ1; qL) = 1 (3.33)
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with θj ≡ λj/(2|u|) for j = 1, 2. We takeph
2(λ) (pp

2(λ)) as p2(λ) for the particle with
T z = 1

2 (T z = − 1
2). For the two-particle state withT = 1, the bulk scattering matrix is of

the form

S22(µ) = eiψ22(µ) ψ22 = π + 1

i
ln

(
0
(

1
2 + 1

2iµ
)
0
(
1− 1

2iµ
)

0
(

1
2 − 1

2iµ
)
0
(
1+ 1

2iµ
)) . (3.34)

Then the quantization condition take the following forms:

2Lph
2(λ1)+ ψ22(θ1− θ2)+ φ+2 (λ1; q1)+ ψ22(θ1+ θ2)+ φ+2 (λ1; qL) = 0 (mod 2π)

(3.35)

for T z = 1, and

2Lpp
2(λ1)+ ψ22(θ1− θ2)+ φ−2 (λ1; q1)+ ψ22(θ1+ θ2)+ φ−2 (λ1; qL) = 0 (mod 2π)

(3.36)

for T z = −1, whereφ±2 are introduced as follows:

K2(λ; q) =
(

eiφ+2 (λ;q) 0

0 eiφ−2 (λ;q)

)
. (3.37)

In order to determineφ+2 , we consider the two-particle state withT z = 1. This state
corresponds to the case withN = L− 2, M ′1 = L/2− 1, M ′n = 0 (n > 2) andMn = 0
(n > 1). In this case, we have no real rapidities described bykj to rewrite the Bethe-ansatz
equations in the following form:

Jα

L
= z2(λα) (3.38)

2πz2(λ) ≡ 2

(
1+ 1

L

) (
sin−1(λ+ i|u|)+ sin−1(λ− i|u|))− θ ( λ

|u|
)
− i

L
lnY (λ)

− 1

L

L/2+1∑
β=1

{
θ

(
λ− λβ

2|u|
)
+ θ

(
λ+ λβ

2|u|
)}

+ 1

L

2∑
α=1

{
θ

(
λ− λh

α

2|u|
)
+ θ

(
λ+ λh

α

2|u|
)}

. (3.39)

Here {Jα} (α = 1, . . . , L/2+ 1) take positive integer values, two of which correspond to
the holes with the rapiditiesλh

1 andλh
2. Then we obtain an explicit form of the functionz2

as follows:

2πz2(λ) = −2

(
1+ 1

L

)
(p2(λ)− p2(0))− 1

L
(B2(λ; q1)+ B2(λ; qL))− 1

L
9(λ)

+ 1

L

{ 2∑
α=1

(
8(λ− λh

α)+8(λ+ λh
α)
)+8(λ)} (3.40)

(where we have neglected higher order terms in 1/L) with

B2(λ) = 1

i

∫ ∞
−∞

dω

ω

e−iωλe|uω|

2 coshuω
ÃA(ω; q). (3.41)
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Then, we have the following equalities:

2πz2(λ2)L = 0 (mod 2π) (3.42)

−2πLz2(λ1) = 2(L+ 1) (p2(λ1)− p2(0))−8(λ1− λ2)−8(λ1+ λ2)

+9(λ1)−8(λ1)−8(2λ1)+ B2(λ1; q1)+ B2(λ1; qL) (3.43)

where we have usedλα as an abbreviation forλh
α. Using the quantization condition (3.34),

we can read off the phase shifts from equations (3.41), (3.42) as follows:

φ+2 (λ; q) = φ(0)2 (λ)+ δ+2 (λ; q) (3.44)

φ
(0)
2 (λ) = 1

2 (9(λ)−8(λ)−8(2λ)) δ+2 (λ; q) = B2(λ; q) (3.45)

up to rapidity-independent additive constants. The explicit forms of the phase shifts are
given by

φ
(0)
2 (λ) = 1

i
ln

(
0
(
1− 1

2iθ
)
0
(

3
4 + 1

2iθ
)

0
(
1+ 1

2iθ
)
0
(

3
4 − 1

2iθ
)) θ = λ

2|u| (3.46)

δ+2 (λ; q) =


1

i
ln

(
0
(

1
2ξ + 3

4 + 1
2iθ
)
0
(

1
2ξ + 1

4 − 1
2iθ
)

0
(

1
2ξ + 3

4 − 1
2iθ
)
0
(

1
2ξ + 1

4 + 1
2iθ
))+22(λ; q) for type a

22(λ; q) for type b

(3.47)

for 1> q > 0 and 2ξ > 1, where

22(λ; q) = 1

i

∫ ∞
−∞

dω

ω
e−iωλ 1

2 coshuω

(
2
∞∑
j=1

q2j J2j (ω)

)
. (3.48)

By an argument similarly to that in subsection 2.3, we can construct the two-particle
state withT z = −1. Then, we can also derive the phase shiftφ−2 (λ; q) as follows:

φ−2 (λ; q) = φ(0)2 (λ)+ δ−2 (λ; q) δ−2 (λ; q) = B2(λ;−q) (3.49)

or, more explicitly,

δ−2 (λ; q) =


22(λ; q) for type a

1

i
ln

(
0
(

1
2ξ − 1

4 + 1
2iθ
)
0
(

1
2ξ + 1

4 − 1
2iθ
)

0
(

1
2ξ − 1

4 − 1
2iθ
)
0
(

1
2ξ + 1

4 + 1
2iθ
))+22(λ; q) for type b

(3.50)

for 1> q > 0 and 2ξ > 1.
Finally, we can arrive at the following relationships:

δ−2 (λ; q)− δ+2 (λ; q) =


0 for typea

1

i
ln
ξ − 1

2 − iθ

ξ + 1
2 + iθ

for type b.
(3.51)
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4. Summary

In the present paper, we have determined the boundary scattering matrices of the Hubbard
open chain with boundary fields. For each of the type-a and type-b boundary fields, the
boundary scattering is described by 4× 4 matrices. We summarize the results obtained by
our calculations as follows.

4.1. Repulsive Hubbard open chain

In the repulsive Hubbard model, the boundary scattering matrix obtained by our calculations
takes the form

K =
(
Ks 0
0 Kc

)
(4.1)

where the 2× 2 matrixKs (Kc) is diagonal and corresponds to the quasiparticle with spin
(charge). The matrixKs (Kc) is represented in the two-dimensional space spanned by the
states withSz = ± 1

2 (T z = ± 1
2).

Type-a boundary boundary field.

Ks = K(0)
s (θ)K(1)

s (θ; q)
(

1 0

0 1

)
θ ≡ λ

2u
(4.2)

Kc = K(0)
c (θ)K(1)

c (θ; q) 1+ qeik

1+ qe−ik

(
1 0

0
ξ − iθ

ξ + iθ

)
θ ≡ sink

2u
. (4.3)

Type-b boundary boundary field.

Ks = K(0)
s (θ)K(1)

s (θ; q)0
(

1
2ξ − 1

4 + 1
2iθ
)
0
(

1
2ξ + 1

4 − 1
2iθ
)

0
(

1
2ξ − 1

4 − 1
2iθ
)
0
(

1
2ξ + 1

4 + 1
2iθ
)
 1 0

0
ξ − 1

2 + iθ

ξ − 1
2 − iθ


θ ≡ λ

2u

(4.4)

Kc = K(0)
c (θ)K(1)

c (θ; q) 1+ qeik

1+ qe−ik

0
(

1
2ξ + 1

2iθ
)
0
(

1
2ξ + 1

2 − 1
2iθ
)

0
(

1
2ξ − 1

2iθ
)
0
(

1
2ξ + 1

2 + 1
2iθ
) ( 1 0

0 1

)
θ ≡ sink

2u

(4.5)

for 1 > q > 0 and 2ξ ≡ (q−1− q)/(2u) (> 1). Here we have defined the functionsK(0)
s ,

K(1)
s , K(0)

c , K(1)
c as follows:

K(0)
s (θ) = 0

(
1− 1

2iθ
)
0
(

3
4 + 1

2iθ
)

0
(
1+ 1

2iθ
)
0
(

3
4 − 1

2iθ
) (4.6)

K(0)
c (θ) = 0

(
1+ 1

2iθ
)
0
(

1
4 − 1

2iθ
)

0
(
1− 1

2iθ
)
0
(

1
4 + 1

2iθ
) (4.7)

K(1)
s (θ) = exp

[
−i
∫ ∞
−∞

dω

ω

sinωθ

2 coshω2

(
2
∞∑
j=1

q2j J2j

(
ω

2u

))]
(4.8)
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and

K(1)
c (θ) = exp

[
−i
∫ ∞
−∞

dω

ω

e−
|ω|
2 sinωθ

2 coshω2

(
2
∞∑
j=1

q2j J2j

(
ω

2u

))]
. (4.9)

4.2. Attractive Hubbard open chain

In the attractive Hubbard model, the boundary scattering matrix takes the following form:

K =
(
K1 0

0 K2

)
(4.10)

where the 2× 2 matrixK1 (K2) is diagonal and corresponds to the quasiparticle with spin
(charge).

Type-a boundary boundary field.

K1 = K(0)
1 (θ)K

(1)
1 (θ; q)1+ qe−ik

1+ qeik

0
(

1
2ξ + 1+ 1

2iθ
)
0
(

1
2ξ + 1

2 − 1
2iθ
)

0
(

1
2ξ + 1− 1

2iθ
)
0
(

1
2ξ + 1

2 + 1
2iθ
) ( 1 0

0 1

)
θ ≡ sink

2|u|

(4.11)

K2 = K(0)
2 (θ)K

(1)
2 (θ; q)0

(
1
2ξ + 3

4 + 1
2iθ
)
0
(

1
2ξ + 1

4 − 1
2iθ
)

0
(

1
2ξ + 3

4 − 1
2iθ
)
0
(

1
2ξ + 1

4 + 1
2iθ
)
 1 0

0
ξ − 1

2 − iθ

ξ − 1
2 + iθ


θ ≡ λ

2|u| .
(4.12)

Type-b boundary boundary field.

K1 = K(0)
1 (θ)K

(1)
1 (θ; q)1+ qe−ik

1+ qeik

(
1 0

0
ξ + iθ

ξ − iθ

)
θ ≡ sink

2|u| (4.13)

K2 = K(0)
2 (θ)K

(1)
2 (θ; q)

(
1 0

0 1

)
θ ≡ λ

2|u| (4.14)

for 1> q > 0 and 2ξ ≡ (q−1− q)/(2|u|) (> 1). Here we have defined the functionsK(0)
1 ,

K
(1)
1 , K(0)

2 , K(1)
2 , as follows:

K
(0)
1 (θ) = 0

(
1+ 1

2iθ
)
0
(

1
4 − 1

2iθ
)

0
(
1− 1

2iθ
)
0
(

1
4 + 1

2iθ
) (4.15)

K
(0)
2 (θ) = 0

(
1− 1

2iθ
)
0
(

3
4 + 1

2iθ
)

0
(
1+ 1

2iθ
)
0
(

3
4 − 1

2iθ
) (4.16)

K
(1)
1 (θ) = exp

[
−i
∫ ∞
−∞

dω

ω

e−
1
2 |ω| sinωθ

2 cosh1
2ω

(
2
∞∑
j=1

q2j J2j

(
ω

2|u|
))]

(4.17)

and

K
(1)
2 (θ) = exp

[
−i
∫ ∞
−∞

dω

ω

sinωθ

2 cosh1
2ω

(
2
∞∑
j=1

q2j J2j

(
ω

2|u|
))]

. (4.18)
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We find that the type-a and the type-b boundary fields influence the boundary scattering
matrices for both of the spin and the charge sectors. However, the matrices of the charge
and the spin degrees of freedom are proportional to the identity matrices for the type-b and
the type-a boundary fields, respectively. On the other hand, thea-type (b-type) boundary
field sprits the charge doublet withT = 1

2 (the spin doublet withS = 1
2).

It is known [16] that in the scaling limit, the Hubbard chain with theSO(4) symmetry is
identified as theSU(2) chiral-invariant Thirring (Gross–Neveu) model, containing massive
and massless sectors (see, e.g., [17]). This scaling limit yields an integrable field theory
with boundary interactions from the the Hubbard model with boundary fields. By taking an
appropriate limit in the boundary scattering matrices of the Hubbard open chain, we may
directly derive the matrices describing the boundary scattering [18] in the resulting field
theory. Physical applications of the scattering matrices will be given in a separate paper.
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