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Boundary scattering matrices in the Hubbard model with
boundary fields
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Department of Physics, University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113, Japan
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Abstract. Elementary excitations in the one-dimensional Hubbard model with boundary fields
are discussed. Boundary scattering matrices for the excitations of the charge and spin sectors
are evaluated. Both the repulsive and the attractive Hubbard models at half-filling and without
a magnetic field are studied.

1. Introduction

In the present paper, we study the elementary excitations of the one-dimensional Hubbard
model with boundary fields, which is described by

L

L-1
H=- Z Z (C;acjﬁ-ld + C;Jrlacjf’) + 4u Z (nj+ - %) (nj_ - %)

j=lo=% j=1

+q14n1y +q1-n1- +qrinpe +qr-np—. (1.1)
Here the symbot;, (cjg) denotes the annihilation (creation) operator of the electron with

the spino at the sitej, andn;, is defined byn;, = cj,gcj(,. In the present paper, we take
an even integer as.

The purpose of the present paper is to derive the boundary scattering matrices for
the quasiparticles corresponding to the charge and the spin excitations of the Hubbard
model with boundary fields (1.1). Essler and Korepin [1] and Andrei [2] studied scattering
matrices in the Hubbard model undepariodic boundary condition. They determined the
two-particle scattering matrices in thoeilk [1, 2]. In the present study, we determine the
scattering matrices of the quasiparticles atltbendary In our previous study [3], we have
discussed the elementary excitations of the Hubbard model fvathboundaries, which
is described by the Hamiltonian (1.1) with. = ¢;+ = 0. We have already obtained the
scattering matrices of the quasiparticles dite boundary, as a part of our results in [3].

In order to derive the scattering matrices exactly, we need the Bethe-ansatz equations
for the Hubbard model with boundary fields. For the following four kinds of boundary
fields, the Bethe-ansatz equation of the present model (1.1) has been derived.

CaseA: q1+ = g1 andq;+ = q; (aa type) [4],
CaseB: g1+ = +q1 andgq;+ = +q; (bb type) [5-7],
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351-01, Japan.
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CaseC: g1+ = +q1 andq.+ = g (ba type) [5, 6],
CaseD: g1+ = g1 andqr+ = +q;, (ab type) [5, 6].

Here thea-type (b-type) boundary field corresponds to the chemical potential (the magnetic
field) at a boundary site. (The Bethe-ansatz equation under the free boundary condition, i.e.
g1+ = qr+ = 0, has been derived by Schulz [8].) The Bethe-ansatz equation for each case
takes the following form [4-7]:

' sink; — A lu sSink; + A I
2D 7k qrq) =[] == p o I SING T Ap o+ 1 1.2)
pi SiNkj — Ap —lu sink; 4 Ag — iu

N de — SiNk; + iu Ay + Sink; + iu

Ao — SiNk; —iu Ay + Sink; — iu

)\a—)nﬁ—i-ZiM)La—{-)xﬁ—{-Ziu
Aa—kﬁ—Ziuka +A,3—2Iu

M

=Y(Owiqrq0) [ ]
p=1
(B#a)

j=1....N a=1....M (1.3)

=1

where N (M) denotes the total number of the electrons (the number of the electrons with
down spins). Here we have defined

Z(k; g1, 91) = & (ks q1)¢ (ks qr) for casesA, B, C and D (1.4)
1 for caseA
n(x; qn(x; qr) for caseB
YA q1.91) = (1.5)
n(%; q1) for caseC
n(x;qL) for caseD
with
1+ qe* A+i(u—3qt-9)
tiq) = — 5 nGiq) =——— : (1.6)
1+ g€k X—I(u—%(q—l—q))
Then, the energy of the present model is given by
N
E=) (—2cosk; —2u)+uL. (x.7)
j=1

We can restrict the solutions of the above Bethe-ansatz equations as follows:
O<Rek) <m ki#0,m and Rér,) >0 A, #0,00 (1.8)

so that we obtain independent Bethe states. We refer the reader to the Bethe-ansatz
wavefunction in the present model [4, 8]. See also, e.g., [9, 10]. (In order to derive
the boundary scattering matrices for tir¢ype andb-type boundary fields we only have to
consider two cases, i.e. cad€gaa type) and cas& (bb type), since the contributions from

the both ends are independent of each other.)

The periodic Hubbard chain is invariant under asio(4) = SU(2) x SU(2)/Z>
transformation [11]. Consequently, the Hubbard chain with the periodic boundary
condition has four elementary excitations (i.e. quasiparticles), which form the fundamental
representation oSU (2) x SU(2), accuratelySO(4) [1]. A couple of these elementary
excitations carries spin but no charge, and the other couple carries charge but no spin.
The bulk termsin the open Hubbard chain with boundary fields (1.1) are al$o(4)
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= SU((2) x SU(2)/Z, invariant. Indeed, if we neglect the boundary terms or the boundary
fields vanish in (1.1), all the following six generators:

L L. 1L
= ZC}[+CJ‘_ S = ZCJLCH_ St = > Z (njy —n;-) (1.9)
j=1 j=1 j=1
L ' L e 1L
= Z(—l)fcj+cj_ T = Z:(—l)fcjfcﬂr —5 Z nj+nj_ — )
Jj=1 j=1 j=1
(1.10)

commute with the Hamiltonian (1.1). ThH&, quotient corresponds to the fact that operator
8%+ 7% has only integer eigenvalues dsis even. The operator§St, S—, §¢} and
{T+,7T-,7%} correspond to th6U (2) symmetry in the spin degree of freedom and that in

the charge degree of freedom, respectively. (In the present paper, we specify tiSé/t&al

spin (charge) by the quantum numb®(7) and describe the-componentS* (7<) by the
guantum numbes? (7).) Since the properties of the elementary excitations in the bulk do
not depend on boundary conditions, the behaviours of the quasiparticles in the present model
(1.1) are already known except for the boundary scatterings. The local violati®o @f)
symmetry due to the boundary fields is expected to influence the scattering at the boundary,
as with other models, e.g., the Heisenberg model [9, 10] and the supersymmditric
model [12]. Here we remark that thetype boundary breaks the char§& (2) symmetry
(generated by{7t,7~,7%}) and theb-type boundary breaks the sp8i/(2) symmetry
(generated byS*, S—, §%}).

The way to determine the boundary scattering matrices has been established through
recent works [9, 10, 18]. Ghoshal and Zamolodchikov [18] generalized the bootstrap
approach for determining the bulk scattering matrix [17] to derive the boundary scattering
matrix of the boundary sine-Gordon model. Fendley and Saleur [9] and Gritaal
[10] proposed alternative approaches to determine the boundary scattering matrix for the
Heisenberg open chain directly from the Bethe-ansatz equation. In the present paper, we use
the method by Grisarat al [10]. Their method [10] is based on the following quantization
condition for factorized scattering of two particles with repiditiesand A, on a line of
length L:

exp(ip(A1)2L) S12(h1 — 22) KT (A1) S12(h1 + 22) KR (M) = 1. (1.11)

This condition comes from the requirement that the wavefunction should vanish at the
both ends of the line [9, 10]. Here we describe the physical momentum of a quasiparticle
with a rapidity A by the symbolp(x). The symbolSi»(1) denotes the bulk scattering
matrix of the particles labelled by ‘1’ and ‘2’. The symbKllL(R)(A) denotes the boundary
scattering matrix describing the scattering of a boundary at the left (right) end. (For detailed
discussions on the quantization condition, see [10].)

By using the above quantization condition [10], we determine the boundary scattering
matrices in the charge sector and the spin sector for each of the following four cases:

a-type boundary field in the repulsive Hubbard model (section 2),
b-type boundary field in the repulsive Hubbard model (section 2),
a-type boundary field in the attractive Hubbard model (section 3),
e b-type boundary field in the attractive Hubbard model (section 3).

Recently, another author [13] calculated boundary scattering matrices in the repulsive
Hubbard model with the-type boundary field. He remarked [13] that quasiparticle spectra
of the repulsive and the attractive Hubbard models are related by an interchange of the
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spin and charge degrees of freedom [13], although he did not derive the scattering matrices
in the attractive Hubbard model explicitly. In the present paper, we derive the boundary
scattering matrices for the above four cases explicitly.

Since we need the information about the two-body scattering in the bulk [1, 2] in
deriving the boundary scattering matrices, we briefly review the known results about the
properties of the quasiparticles in the Hubbard chain and their two-body scattering matrix
in subsections 2.1 and 3.1. In our calculations, we also have to adopt the string hypothesis
[14] for the solutions of the Bethe-ansatz equation. In subsections 2.2 and 3.2, we briefly
explain the string forms of the solutions for the Hubbard chain, as preliminaries. We
determine the boundary scattering matrices for 0 in subsections 2.3 (charge sector)
and 2.4 (spin sector). Far < 0, we obtain the matrices describing the boundary scattering
in subsection 3.3 (spin sector) and 3.4 (charge sector).

2. Repulsive Hubbard open chain

2.1. Review of the bulk scattering matrix

In this subsection, we briefly review the two-body scattering matrix [1, 2] of the elementary
excitations in the (infinitely long) periodic Hubbard chain with t5i@(4) symmetry for
u > 0. (For detailed explanations, see, e.g., [1, 2] and references therein.)

The repulsive Hubbard model has four elementary excitations, which forms fundamental
representation 08U (2)spin X SU(2)charge[1, 2]. Two of them carry spin but no charge to
form a doublet of the spisU(2). Each of them is a singlet with respect to the charge
SU(2). Namely, their quantum numbers can be described as%, S = j:% andT = 0.
These two excitations (quasiparticles) are called spinons, and have the momgyitym
and the energys(1):

T * dw Jo(w) SiN(w)
ps) =75 /0 ‘» coshou) (2.1)
_ * dw J1(w) cogwA)

Here the symbol/,(w) denotes the Bessel function. The other two elementary excitations
carry charge but no spin to form a doublet with respect to the ch&lg€&) and a
singlet of the spinSU (2). Namely, they have the quantum numb#&rs= % T: = i% and

S = 0. These two excitations (quasiparticles) are called holoiTfoe % and antiholon for

T = —3. The holon (antiholon) has the momentyrfi(k) (pa"(k)) and the energy! (k)
(¢3"(k)) described by

h b4 * dw Jo(w) sin(w sink)e "
k=~ —k— —
pek) 2 /o 1) coshwu)

=7 + pg"(k) (2.3)

=eNk). (2.4)

® dw J1(w) COS(w SiNk) €
el(k) = 2u 4 2 cosk + 2/ Ao Ji(w) COS(w )
0o @ coshwu)

The two-body scattering matrix of these elementary excitations is 16-dimensional and
block-diagonal, which is described by

Sss(141) 0 0 0
0 S. 0 0

§— sc(142) ) (2.5)
0 0 Ses(3) 0

0 0 0 Scc(ita)
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At first, the matrixSss describes scattering of two spinons (with rapiditigsand 1.,), and
is of the form

I (3430 (1= 3in) (uﬂiP) a1 — A

SSS(M)Z_F(%—%W)F(1+%W) . = (> 0) (2.6)

2u

whereZ andP denote the 4 4 identity and permutation matrices, respectively. The four-
dimensional space afss corresponds to the four degenerate states with two spinons, i.e.
the triplet (§ = 1) and the singlet§ = 0) states. Next, the scattering mat§y. for two

holons/antiholons (with rapiditiel, andk,) is given by
rE-2%in)r@a+iin T—iP Sinky — sink
L e Y

This matrix S is described in the space spanned by the four degenerate states with two
holons/antiholons, i.e. the tripleT’(= 1) and the singletf = 0) states. The scattering of
one spinon and one holon/antiholon is described by

Sec(u) =

__.1+iexp(7m) _ A —sink

Sse(i) = |71 — iexp(nu)I = o >0 (2.8)
__,1+iexp(nu) _ sink — A

Ses(u) = |71 —iexp(rp) n = “ou (> 0. (2.9)

2.2. String hypothesis

In deriving the boundary scattering matrices in subsections 2.3 and 2.4, we shall assume
that the string hypothesis [14] holds in the solutions of the Bethe-ansatz equation for the
Hubbard model with boundaries similarly to the periodic-boundary case. (Also in other
models, e.g., the Heisenberg model [9, 10] and the supersymmeitiecnodel [12], the
solutions of the Bethe-ansatz equations for the open chain are expected to take the same
string forms as those for the periodic chain.) In this subsection, we briefly explain the string
forms [14] of the solutions in the Bethe-ansatz equation for the repulsive Hubbard chain.

We assume that the solutions of the Bethe-ansatz equation for the repulsive Hubbard
chain take the following string forms [14].

(1) A-strings: n A,’s combine into a string-type configuration to take the form

AT =00 i(n 41— 2j)u i=1...,n a=1...,M,
with a real numbei”, apart from a correction of order&. Here the symboé denotes a
positive number.

(2) k—=r-strings: 2 k;’s andn A,’s combine into another string-type configuration and take
the following forms to @e~?%):

Aol =00 +in+1—2j)u j=1....,n a=1...,M

a =
with a real numbei”),, and

k= —sint O/ +inu)

k2 =sin*(\" 4+ i(n — 2u) k2 =m — k2

o« =

k4 =sint/ 4+ i(n — du) k>=m — k2

o« —
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k2172 = sint (" —i(n — 2)u) k2=t =g — 22

k2" = —sint O/ — inu).

(3) Realk;, which do not form the above string-type configurations. (Hereafter, we describe
only this type of real element ifk;} by the symbok;.)

If we introduce the numbenM’ by M’ =>""° nM/, the number of reak;'s is equal to
N —2M’'. We also find that the relationshid = Y>> nM, + Y>> nM holds.

The ground state of the present model (1.1) witls O corresponds to the case with
N=L My =L/2,M,=0(@>2)andM, =0 (n > 1).

2.3. Charge sector

In this subsection, we derive the boundary scattering matrices for the elementary excitation
of the charge sector far > 0.

For this purpose, we take it into account that the quantization condition for factorized
scattering of two particles holds [9, 10]. We can describe the quantization condition for
factorized scattering of two particles with rapiditi#s and k, on a line of lengthL, as
follows:

exXpi pe(k1)2L) Seo(61 — 62) Kc(k1; q1) See(61 + 62) Ke(ki; qr) = 1 (2.10)

with ; = sink;/(2u) for j =1,2. The quantityp.(k) takes the holon momentum@(k)
(the antiholon momentump@"(k)) for 72 = ; (T7 = —3). For the triplet stateT( = 1), the
bulk scattering matrixS is of the form [1]

I (z—32im) T (14 3in)
T T . (2.11)
F(z+2i) T (1= 3in)

The U (1) symmetry of the boundary terms in eq.(1.1) implies that the boundary scattering
matrix Kq(k; q) takes the following form:

exp(igg (k; q) 0
Kc(k;q)=< (i9: ) o .
0 exp(i¢s (k; q))
Here this matrix is represented in the two-dimensional space spanned by the states with
T = i%. Then, the quantization condition yields the following relationships:

2L pl(k1) + Yec(B1 — 02) + ¢ (k1 q1) + Yec(61 + 62) + ¢ (ka3 gL) =0 (mod 2r)

. 1
See(p) = exD(' I/fcc(,U«)) Yec(p) = i |n<

(2.12)

(2.13)
for the T* = 1 state, and
2L p(ky) + Yec(O1 — 02) + b (k1 q1) + Yec(B1 + 62) + ¢ (ki: gr) =0 (mod 2r)

(2.14)
for the T = —1 state. Here we should tale+ 1 asL for models defined on a chain with

L sites [3]. What we have to do here is to determine the phase sfifts ¢).

Within the string hypothesis, the state with = 1 is characterized by two holes in the
sea of real roots ofk;} and no holes in the sea of real,}. Namely, this state corresponds
to the case witW =L -2, My =L/2—-1, M, =0 (n > 2) andM, =0 (n > 1). Then,
we can rewrite the Bethe-ansatz equations in the following forms:

Jo

]A
Z] = zc(k)) and 7 = wslta) (2.15)
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1 i 1EE! (L (sink — 2y sink + Ag
2 =21+ - )k——-InZ(k — 0| ——— o ——
7 2e(k) <+L> . ()+L;{( ; )+< ; )}
(2.16)

1 (a i 1< A — sink; A+ sink
2z5(\) = 29 <u> -7 INY () + 7 Z {9 (u) +6 (u>}

=1

222:{ ( —smkh) +6<A+zink}‘>}
TEPER) ()

with 6(x) =2tarmx. Here {[;} (j=1,...,L) and {J,} (@=1,...,L/2—1) take
positive integer values. Two off;} correspond to the holes with the rapiditie% and
k5. By neglecting contributions smaller thariZl, we have

1 1 1
2mzc(k) = -2 (1+ L) (pl(k) — pl(0)) — 7 (Be(k; q1) + Be(k; q1)) — Z‘D(Slnk)

2
_ 2{2 (®(sink — sink) + ®(sink + sink)) + <I>(sink)} (2.18)
j=1

where

*  gloh gy * gluolgriol gq,
YA =i — D) =i - 2.19
) I[w 2coshuw o ) I/,oo 2coshuw o ( )

1 eik 1 % q e—iwsink 5
+4 / v Ar(@; ). (2.20)

Be(k; )—1In +
D=1 ge* Ui ) . w 2coshiw

Here the functiondr is given by Ar(w; ¢) = [, di Ar(%; ¢)€“*, where

dk a; (A — sink) Ag(k; q) for typea
ArGi)=1"" (2.21)
dk a1 (A — sink) Ao(k; q) + A1(; q) for type b
0 = 1 v|u|
R VI R
Aok = = L ek o) (2.22)
’ 2ri dk
d
Ai(r; q) = i i Inn(; q).

When we need to express the fact that the functi(r; ¢) depends on the parameter

u and the type of boundary fielda ©r »), we describe this function adg(x; ¢|u) with

x = a, b. In deriving equation (2.18), we have neglected higher-order corrections to rewrite
the summations in (2.16), (2.17) as integrals. Then, we have made the assumption that the
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contributions due to the shift of integration boundaries are of higher ordeflinds in the
cases of other models [9, 10, 12]. Using the functignand zs thus obtained, we have

—2nze(k))L = 2(L + 1) (pl(ky) — pl(0)) + ®(sinky — Sinkz) + ®(Sinks + sinky)

+W(sinky) + ®(sinky) + ®(2sinky) + Be(ky; q1) + Be(ki; qr) (2.23)
where we have abbreviatehji by k;. Here the equality
2nz¢(k))L =0 (mod 2r) (2.24)

holds since evaluation fatz. at a root of the Bethe-ansatz equations yields an integer by
definition. Comparing equations (2.23), (2.24) with (2.13), we can recognize the relationship

¢e (ks q) = ¢ (k) + 85 (k; ¢) (2.25)
o9 (k) = 1 (W(sink) + @(sink) + &(2sink)) 85 (k; @) = Be(k; q) (2.26)

holds apart from rapidity-independent constants. We have already defifedsing the
Bethe-ansatz equation for the Hubbard model with free boundaries [3]. We can rewrite the
phase shift$p® ands; to have

;. ; _ ;- .
606 =1 (F (L+50) (s 2'”) o = Sink 2.27)

I (1—3i0)T (5 + 3i0) 2u
1, 1+4gé* _
T In = + Oc(k; q) for type a
83 (ks q) = }m 1+q€* T (36+30)T (3 +1) — i9) (2.28)
i \1+qge ™I (36 —3i0)T (3¢5 + 1) + 3i0)
+ Oc(k; q) for type b
with
de —iwsink el 2j
Oclkiq) = i [oo w € 2 coshuw gq J2j(@) ). (2:29)

In the present paper, we define the paramétes be& = (¢ — ¢)/(4|u|) for u > 0 and
u < 0. In calculating the phase shift for the typeboundary field, we have constrained
ourselves to the region 2 ¢ > 0 and¢ > %

Next, we discuss the case witfi* = —1. We consider the following canonical
transformation:

iy —> (=Dc] and o —> (=Dc], (2.30)

which keeps the Hamiltonian (1.1) without boundary fields invariant. The present
transformation does not change the typkeundary field, but changes the sign of the type-
boundary field. We also remark that the operafpis_ , . S*S% S*and)_,_ 77"

are invariant, and ¢ changes inte-7<, under the transformatlon Therefore, we can obtain
the state with7¢ = —1 of the Hubbard model (1.1) as that wilhi = 1 of the model with

the typea boundary field reversed. After similar calculations to the previous case, we arrive
at the following results:

bs (k; ) = ¢ (k) + 85 (k; q) 8z (k; @) = Be(k; —q) (2.31)
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apart from rapidity-independent constants. The above equation holds for both of the type-
and the type> boundary fields, since the functid®y(k; ¢) is an even function of for the
typed boundary field. Indeed, we have

1. 1-—gé* _
i In 1—7619’”‘ + Oc(k; q) for type a
dotkiq) =11, (1+4¢ T(GE+50)T (56 +1) —3i0) (2.32)
i \1+ge*r (e - Lio)r (3¢ + D + 3i0)
+ Oc(k; q) for type b

for 1> ¢ > 0 and¢ > 3.
Then, we find that the following relationships hold:

1 —i0
In?E -

. for type a
Solksq) =iy =11 §+10 (2.33)

0 typeb.

2.4. Spin sector

In this subsection, we determine the scattering matrices for the elementary excitation of the
spin sector fom > O.

In this case, we consider the quantization condition for factorized scattering of two-
particle states with rapidities; andy;

exp(ips(21)2L) Sss(61 — 02) Ks(21; q1) Sss(01 + 62) Ks(A1; q1) = 1 (2.34)

with 6; = A;/(2u) for j = 1, 2. Here the symbops(1) denotes the momentum of a spinon
of a rapidityA. For the triplet statef = 1), the bulk scattering matrifss takes the form [1]

i 1 (T (G+ 3T (1-3in)
S — eﬂbss(ll—) — + — |n 2 2 2 . 235
When we parametrize the boundary scattering maki&.; ¢) as follows:
exp(igpd (4; 0
Ks(h; q) = < pligs G ) o ) (2.36)
0 exp(i¢s (4; 9))
we can rewrite the quantization condition as
2L ps(r1) + Yss(61 — 02) + ¢35 (A1s q1) + Yso01 + 62) + ¢5 (ha: q1) =0 (mod 2v)
(2.37)

for two-particle states witt§* = £1, respectively.

Within the string hypothesis, the state wifh = 1 corresponds to that with two holes
in the sea of real roots ofr,} and without holes in the sea of ref;} , i.e. N=1L,
My=L/2—-1,M,=0 (n>2)) andM, =0 (»n > 1) . Then, the Bethe-ansatz equations
are of the form

I; Jo
Z] = zc(k)) and 7 = wslta) (2.38)
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1 i 1REE( /sink — 2y sink + Ag
2nzek) =2 (14> Jk——InZK) + > [y RN e
7 2e(k) <+L> . ()+L;{( ; )+< ; )}

2 L oh i N
_12{9 (smk Aa)+9<5|nk+ka>} 2:39)
L a=1 u u
) . _ _
= (2) L35} (300 o (1500

=1

LREN a2y A+ Ag

-= 6

2 () ()]
13 A— AN A+ AN

+LZ{0( 5 >+9( 5 )} (2.40)
a=1

Here{/;} (j =1,...,L) and{/,} (@ =1, ..., L/24 1) take positive integer values. Two
of the {J,} correspond to the holes with the rapiditie% and . We neglect terms less
than 1/ L to obtain

1 1 1
2mzs(A) = —2 <1+ L) (ps(X) — ps(0)) — 1 (Bs(A; q1) + Bs(A; q1)) — Z\I/(A)

1 : h h
+ {;(qm—,\a)+q>(x+,\a))+<1>(x)} (2.41)
with
1 % qep e—iwkeu\wl ~

Using the functiorzs thus obtained, we can derive
—21zs(A)L = 2(L + 1) (ps(A1) — ps(0)) — @ (A1 — A2) — (A1 + A2)

+W (A1) — P(A1) — P(2h1) + Bs(A1; q1) + Bs(A1; q) (2.43)
where we usé., as an abbreviation fax"". Taking the equality

27z5(A1)L =0 (mod 2r) (2.44)
into account, equations (2.43) and (2.37) yield

¢ G @) = L) + 55 05 9) (2.45)

P M) =3 (¥ () — d() — ©(2) 85 (hs q) = Bs(x; q) (2.46)

up to rapidity-independent additive constants. We have already degiedn [3]. The
explicit forms ofp{® ands} are given by

—Ligyr (3 + &
o0 =t (LOZBOTEHED) oy 2 @247)
I\ (14 3i0)T (5 — 3i0)

2u
O ) for typea
e ) — i i
8 (A1q) = }In I (36 — 5 +3i0)T (36 + 3 — 3i) + Os(h: q) for type b
i\ (61— lig)T (& + L+ Lig) s P
2 472 2 42

(2.48)
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with 1> ¢ > 0 and¢ > 3, where

o1 “do i, 1 - 2j
Os(A; q) = Tf —€ 2(:()5"1460(2;6] Joj(w) ). (2.49)

oo @

Next, in order to discuss the two-particle state with= —1, we consider the canonical
transformation
Cjy —> Cj and cji— — Cjy (2.50)

which keeps the Hamiltonian (1.1) without the boundary-field terms invariant. This
transformation changes the sign of the typdoundary field while it keeps the type-

a boundary field invariant. The operatols,,_, , . 7%7% 77 and }_,_ S*S* are
invariant, andS* changes into—S*. Hence, we can obtain the state with = —1 of

the Hubbard model (1.1) as that wili = 1 of the model with the typé-boundary field
reversed. By taking this fact into account, we have

b5 (A5 9) = ¢ (M) + 85 (A q) 85 (h; @) = Bs(h; —q) (2.51)

up to rapidity-independent additive constants. Here we remark that the fultidibng) is
even with respect tq for the typea boundary field. The explicit form of the phase shift
is given by

Os(A; q) for typea
i) =11 (T (GE+5+35i0)T (56 + 5 — 5i0)
(36 +2—20)T (38 +3+300)

i ) + Os(X; q) for type b

(2.52)
for1>q>0and§>%.
Finally, we arrive at the following relationships:
0 for typea
—3+i6 (2.53)

85 (A q) =85 (s q) = 1
° ° } nsii for type b.
§—5—10

3. Attractive Hubbard open chain

3.1. Review of the bulk scattering matrix

In this subsection, we briefly review the two-body scattering matrix in the bulk for the
attractive Hubbard chain [1, 2]. (For detailed discussions, see, e.g., [1, 2] and references
therein.)

The attractive Hubbard model has also four elementary excitations, which form a
fundamental representation S (2)spin X SU (2)charge [1, 2]. Two of them are chargeless
spin-carriers with the quantum numbe§s= % S = i% and T = 0. The dispersion
relations of these quasiparticles are given by

_ * dw Jo(w) sin(w sink) e~

puk) =k - /0 » coshwu) (3-1)
_ ® dw Ji(w) cos(w sink) e~

e1(k) = 2Ju| — 2 cosk + 2/0 - costion) (3.2)
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The other two elementary excitations are spinless charge-carriers with the quantum numbers
T = % T = i% and S = 0. These patrticles have the following dispersion relations:

by [T do Jo(w)sin(wr) h
po(A) =1 /o ;W =7+ py(A) (3.3)

® dw J1(w) cOSwA)
Prry — _.h
e5(A) = 2/0 o cosHwn) gx(A). (3.4)
Here the charge excitation with* = 1 (7¢ = —1) has the momenturp3(») (p5(1)) and

the energyl(1) (e5(1)).
The two-body scattering matrix of these elementary excitations takes the following form:

S11(11) 0 0 0
0 S 0 0
g = 12(12) ) (3.5)
0 0 S21(u3) 0
0 0 0 S2o(1e4)

At first, the matrix S1; describes the scattering of two spin-carriers (with rapiditesnd
k2), which is of the form

r(:-2Lip)r 1+ din) <;J—i7>) _ sinky — sink;
U3+ dig)r(@—dig) \ p—i B 2|ul
Next, the matrixS,, describing scattering of two charge-carriers (with rapiditiggnd ;)
takes the following form:

I (3+ 5in) T (1 3in) (MIHP) M=k
F(3—3i)T(1+3in) \ pti 2lul
The scattering of one spin-carrier and one charge-carrier is described by

S11(u) = (> 0. (3.6)

Sa2(p) = — (> 0. (3.7

.l+iexp(n,u)I . sink — A

Sen =] o T w= gt 0 (3.8)
. __1+iexp(7m) A —sink
S21(n) = |mz = W (> 0. (3.9)

3.2. String hypothesis

In this subsection, we explain the string hypothesis [1, 14] for the attractive Hubbard chain.
Within this hypothesis, we calculate the boundary scattering matrices in subsections 3.3 and
3.4.

For the attractive Hubbard chain, we assume that the solutions for the Bethe-ansatz
equations take the following string forms [1, 14].

(1) A-strings:n A,’'s combine into a string-type configuration to take the form
AT =AM i 41— 2))|ul j=1....n a=1...,M,

with a real numben”, apart from a correction of order&. Heres is a positive number.
(2) k—x-strings: 2 k;'s andn A,’s combine into another string-type configuration and take
the following forms within the accuracy of @°%):

AT = A i+ 1 — 2))|ul j=1....n a=1....M

o
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with a real numben’,, and
1 1 .
ky = sin (A", +inful)

k2 =sint " 4-i(n — 2)|ul) k2 =m — k2

« =

k& =sin " 4 i(n — B |ul) k2 =m — k2

k212 = sint(\" —i(n — 2)|ul) i

k2t = sint (" —injul).

(3) Realk;’s, which do not form the above string-type configurations. (Hereafter, we
describe only this type of real elementfiy} by the symbols;.)

If we introduce the numbeM’ by M’ =", nM), the number of reak;’s is equal to
N —2M’. We also find that the relationshid = >~ nM, + > -, nM] holds.
The ground state of the present model (1.1) with: O corresponds to the case with

N=L M,=L/2,M =0 (>2)andM, =0 (n > 1).

3.3. Spin sector

In this subsection, we derive the boundary scattering matrices for the elementary excitation
with spin for the attractive Hubbard chain.

The quantization condition for factorized scattering of such two particles with rapidities
ki andk; on a line of lengthL is given by

exp(ip1(k1)2L) $11(61 — 62) K1 (k1 q1)S11(61 + 62)Ka(k1: g1) =1 (3.10)

with 0; = sink;/(2|u]) for j = 1, 2. For the triplet state§= 1), the bulk scattering matrix
S11 take the form [1]

- 1
S1a(p) = /n Y@ = In < ) . (3.11)

i,u) r (1 - %IM)
We can rewrite the quantization conditions as
2Lpa(k) + Y1a(61 — 62) + b5 (k1s q1) + Y1161+ 02) + ¢ (ka; ¢1) =0 (mod 27) (3.12)

for the states withs* = +1, where we have parametrized the boundary scattering matrices
K, as follows:

Ki(k; q) = (

The two-particle state witli* = 1 corresponds to the case with= L, M; = L/2 -1,
M,=0@®=>2)andM, =0 (n > 1). In this case, the Bethe-ansatz equations take the
forms

goi (k:q) 0
) ) (3.13)

0 ddr (kq)

I; Ju

L=ak) and  F =200 (3.14)
1 i 1RE! (L (sink — g sink + Ag

2 kh=2(1+ - )k——InZk)— — o — 0| ———

7a® (+L> PR L;{< u )+ ( u >}

(3.15)
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21zo(0) = 2 (1+ i) (it +iful) + sint o —ilul)) — %9 (k) — % INY ()

|ue]
SELC )
)2
with

YA q1,92) = Y (A q1. g2) Z(k™5 1. 42) Z (k5 g1, 42) sink®™ = A iful. (3.17)

Here{l;} (j =1,2) and{J,} (¢ =1,...,L/2 — 1) take integer values. We have no holes
in the sea of the real rapidities.,} while the integers/; and I, correspond to the two
particles with the real rapiditie@ andkg. If we neglect higher-order terms of 1L, we can
derive the explicit form ot; as follows:

1 1
2rza(k) =2 <1+ L> (p1(k) — p1(0) + — (Bl(k q1) + Ba(k; q1)) + — ‘I’(Slnk)

2
+- {Z ((b(smk — sink?) + @ (sink + smk")) + cp(smk)} (3.18)
j=1
with
1 1_|_qe—ik 1 % dw e—iwsink B
ca) = | i = N 1q). A
Bk = ;i [ i) (3.19)
Here Aa (w: q) denotes the Fourier-transformed function4£(x; ¢), which is defined by
A2(%; q) for type a
Apn(r; q) = (3.20)
A1(%; q) + Az(A; q) for type b
1d n
Az q) = 5 In (kT ek q)). (3.21)

The symbol4a(%; ¢) is an abbreviation ford; (1; ¢|u) with x = a, b. Here we can prove
that the equations

AL glu) = AR —q] [ul) and ALk qlu) = ARG —ql ul) (3.22)

hold for |¢g| < 1. In the following calculation, we take these relationships into account. (We
have already derived and used these equalities in [15].)
We compare the quantization condition (3.12) with the relationship

2nz1(ky)L =0 (mod 2r) (3.23)

2nz1(k))L = 2(L + 1) (p1(k) — p1(0)) + ®(Sinky — sinky) + @ (Sinky + sinky)

+ W(sink) + @ (sink) + ®(2sink) + Bi(ks; 1) + Baks: q1) (3.24)
(where we describekf} by the symbols; as abbreviations), so that we obtain
1 (ki q) = o7 (k) + 87 (k: ) (3.25)

¢ (k) = L (W(sink) + @(sink) + ®(2sink)) 85 (ks q) = Bu(k; q) (3.26)
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apart from rapidity-independent constants. We can find explicit forms of the phase shifts as
follows:

1, (T (@+3i0)r (2 - 1lio) sink
© 2 42
k) =>In f=_— 3.27
o0 =5 (F(l— Li)r (4 + dig) 2lu] 327
1, (L+ae*T ((e+1+%i0)r (3¢ +1 - lig)
i\ 1+q€ r(3e+1-%i0)T (3¢ +1D) + 3io)
81 (ki q) = +©1(k; q) for type a
1, 14ge .
(3.28)

for1>¢g>0and Z= (g —¢)/2lul) > 1. Here we have defined the functi® as
follows:

00 o ~luw] o
O1(k; q) = Tl / d‘”e"“ﬁ'"ke<2Zq2-112,(w)). (3.29)
_ ~

o @ 2 coshuw

By an argument similar to that in subsection 2.4, we obtain the caseSwith—1 to
derive the boundary phase shifts

¢1 (ki) =) +67 (kiq) 8y (ki q) = Balk; —q) (3.30)
with
1 (1+ae* T (3E+1+50)T (36 +1) - 5i0)
i 1+q€* T (36 +1—3i0)T (3¢ + 1) + 3i0)
8 (ki q) = +01(k; q) for typea
1, 1—qge™
(3.31)
forl>g>0and Z > 1.
The difference between the phase shifts for the quasiparticlesSWicth% and S = —%
is given by
0 for typea
Sikiq) —8f(kig) =1 1 i (3:32)
' ! i In i + :Z for type b.

3.4. Charge sector

In this subsection, we derive the boundary scattering matrices for the elementary excitations
with charge for the attractive Hubbard chain.

The quantization condition for factorized scattering of two-particle states with rapidities
A1 and i, are given by

exp(ip2(A1)2L) S22(61 — 02) K2(A1; q1) S22(61 + 62)K2(A1: q1) =1 (3.33)
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with 6; = A;/(2u|) for j =1,2. We takepf(r) (p5(1)) as pa() for the particle with

T = 3 (T° = —3). For the two-particle state witlf = 1, the bulk scattering matrix is of
the form
. 1 (T(E+Lip)r 3
Soo(p) = vz Yoo=m+>1In (i iﬂ) ( i'u) . (3.34)
o\ (3= 2in) T (14 3in)

Then the quantization condition take the following forms:

2L pY(r1) + Y22(61 — 62) + b5 (A1; 1) + Y22(01 + 62) + ¢F (A1; qz) =0 (mod 2r)
(3.35)

for T¢ =1, and
2L pS(h1) + V22(01 — 62) + b5 (A1; q1) + V22(61 + 62) + ¢5 (13 qr) =0  (mod 2r)

(3.36)
for 7% = -1, whereq&f are introduced as follows:
d#z (:q) 0
Ka(x; q) = ( 0 é(ﬁz(k;q)) . (3.37)

In order to determing,, we consider the two-particle state wiltf = 1. This state
corresponds to the case with =L -2, M;=L/2—1, M, =0 (n >2) andM, =0
(n > 1). In this case, we have no real rapidities described;ttp rewrite the Bethe-ansatz
equations in the following form:

Jo
Ly (338)

2mzo(0) = 2 (1+ i) (it +iful) + sin t (o —ilul)) — 6 (’\> — % INY ()

|t
_ELf:l o (22 g (P
L 2|u| 2|u|

p=1
13 A — A A4 A0
— 0 = 0 =N 3.39
+L;{ <2|u|>+ (2|u| >} (3:39
Here{J,} (@ =1,...,L/2+ 1) take positive integer values, two of which correspond to

the holes with the rapidities and 1. Then we obtain an explicit form of the functian
as follows:

1 1 1
2mz(0) = =2 <l+ L) (p2(2) — p2(0)) — I (B2(A; q1) + B2(%; q1)) — Z‘D(X)

1(< . A
+ L{; (P = Ag) + P +24g)) + <I>(A)} (3.40)

(where we have neglected higher order terms /in)lwith

1 % dw e—iwkeluwl B
N=>| S 2 q). 41
Ba(2) i /;oo " ZCosrmoAA(w’ q) (3.41)



Boundary scattering matrices in the Hubbard model

17
Then, we have the following equalities:

2w72(A2)L =0 (mod 2r)

(3.42)
—2mLz2(A1) = 2(L + 1) (p2(A1) — p2(0)) — ® (A1 — A2) — P(A1 + A2)

+W (A1) — P(Ay) — ©(2h1) + Ba(A1: q1) + B2(h1; qr) (3.43)
where we have usell, as an abbreviation fotg. Using the quantization condition (3.34),
we can read off the phase shifts from equations (3.41), (3.42) as follows:

0305 q) = o (W) + 8505 @) (3.44)

oY) =1 (WR) — 2 — d(21) 85k q) = Ba(xs q) (3.45)

up to rapidity-independent additive constants. The explicit forms of the phase shifts are
given by

1, (T (1-1lio)r (3 + lio) A
0 2 412
AN ==>1In 0= _-— 3.46
92 () =5 (r(1+;ie)r(j_;ie) 2lul (349
1 (T (Ee+3+%io)r(te+1—lig
b (DGE+a 0T GEE+HG=50)) o o for typea
gy =11 \T(zE+3-30)T (3¢ +3+3i0)
O2(%; q) for type b
(3.47)
forl>¢g > 0and 2 > 1, where
1 [ do _; 1 >,
O2(h;q) = e [2) g%, : 3.48
2(A: 9) |f_oo o Zcosmw( ;q Zj(w)> (3.48)
By an argument similarly to that in subsection 2.3, we can construct the two-particle
state with7? = —1. Then, we can also derive the phase sif(; ) as follows:
by (i) = 637 (0) + 85 (3 q) 8, (k3 q) = B2(x; —q) (3.49)
or, more explicitly,
O2(4; q) for type a
M) =31 (r(ie-1+tie)T(ie+1-Lis
2 ~In ( (fg I ) (fg 22 ) + O,(1; ) for type b
F\T (36— 7 —310) T (36 + 7 +319)
(3.50)
forl>¢g>0and z > 1.

Finally, we can arrive at the following relationships:

0 for typea
G =80y =11 &—-1- (3.51)
=In—7— for type b.

&+ 5+i0
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4. Summary

In the present paper, we have determined the boundary scattering matrices of the Hubbard
open chain with boundary fields. For each of the typand typeb boundary fields, the
boundary scattering is described by matrices. We summarize the results obtained by
our calculations as follows.

4.1. Repulsive Hubbard open chain

In the repulsive Hubbard model, the boundary scattering matrix obtained by our calculations
takes the form

_ Ks 0
= (% 2) @
where the 2x 2 matrix Ks (K¢) is diagonal and corresponds to the quasiparticle with spin

(charge). The matrixs (K.) is represented in the two-dimensional space spanned by the
states withS* = +1 (77 = £3).

Typesa boundary boundary field.

10
Ks=KQ©0)KLP0; q) (0 1) 0=

j 1 0 ;

1+ ge* _ sink

) @ (g- _ —

Kc=KQ @)K, (e,q)m £—if 6= . (4.3)

Typeb boundary boundary field.

1 1 1; 1 1 1; 1 0
Ks= KS(O)(Q)KS(l)(Q’q)E(i _?+2I9)F(2g+?_ 2'9) (O S—;-i-le)
(36 =2 310) T (38 + 3 + 3i9) E-Loig (4.4)
A
=2
O Lt qe* T(3E+30)T (36 +35—3i0) (1 0
Ke= K" (0)K; (G’Q)1+qe—i’<r(lg—1|9)r(1g+1+1i9) (0 1)
2 2 2 27T 2 (4.5)
__sink
T u

forl>¢g>0andZ=(g'-q)/(2u) (> 1). Here we have defined the functiokg?,
KD, KO, KD as follows:

s r(1+3i0)r (3 - lio) '
r(1+ Lie)r (% - Lie
I (1—3i60) T (5 + 3i0)

® dw sinwd > . 1)
(€] — i 2 =
K¢ (9)_exp[ |/m 5 cos g(z;qu 12,(2’4))} (4.8)
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and
dow e % sinwd
(1) — _ 2j
K¢ (9)_exp|: I/oow ZCOS ( Eq J2<

4.2. Attractive Hubbard open chain

In the attractive Hubbard model, the boundary scattering matrix takes the following form:

(s «)
K =
0 K>

where the 2< 2 matrix K; (K3) is diagonal and corresponds to the quasiparticle with spin

(charge).

Typea boundary boundary field.

1+qge* T (36 +1+2i0)T (36 + 5 — 3i0
Ki=K2@0K®0: ) +q (26 310) T (36 + 5 — 519)

)]

(o %)

1+q€* 1 (36 +1-tio)r (36 + 1+ 1i0)
__sink
— 2ul
. 1
@@y (55§ 35I0)T (36 + 3 — 3i6) 1
K2—K2 (O)Kz (9’ CI) 1 3 1: 1 E
I (36 + 3 300)T (36 + 5+ 310) £
0= A
T 2ul”
Typeb boundary boundary field.
ik /1 0 .
1+4ge* . sink
K1 =KP@0)KkP0; )1 i0 = K
1= KPOKT O o (g St ol
E—16
0 A
K (O) 0 K(l) 0; ( ) 0=
2= 0)K,7 (05 q) 0 1 2]

forl>g>0and Z =
kP, kP, kP, as follows:

0 _ TA+310)T (3 - 3i9)
Ky (0) = 1 1 1

I (1-3i0)T (5 + 3i0)

k0@ = - (1-3i0)T (3 +3i0)
2 r(1+1%i0)r (-l

(1+210)T (3 - 2i0)

K®©) = exp

and
dw sinwd

KD ©6) = ex
2 ©) P o © Zcoshl

RA
R

(2 qu (i
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(4.9)

(4.10)

(4.11)

0
s +ie (4.12)

(4.13)

(4.14)

(g~ —¢)/Ju]) (> 1). Here we have defined the functioks”

(4.15)

(4.16)

do e 2101 sinewe 9
v/ 4.17
o ® Zcoshl ( Zq 2( >>:| .17

)]

(4.18)
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We find that the typer and the types boundary fields influence the boundary scattering
matrices for both of the spin and the charge sectors. However, the matrices of the charge
and the spin degrees of freedom are proportional to the identity matrices for thée me-
the typea boundary fields, respectively. On the other hand,dtgpe (b-type) boundary
field sprits the charge doublet with = 1 (the spin doublet with§ = 1).

It is known [16] that in the scaling limit, the Hubbard chain with 1@ (4) symmetry is
identified as theSU (2) chiral-invariant Thirring (Gross—Neveu) model, containing massive
and massless sectors (see, e.g., [17]). This scaling limit yields an integrable field theory
with boundary interactions from the the Hubbard model with boundary fields. By taking an
appropriate limit in the boundary scattering matrices of the Hubbard open chain, we may
directly derive the matrices describing the boundary scattering [18] in the resulting field
theory. Physical applications of the scattering matrices will be given in a separate paper.
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